Reflected Solar Radiation Near the Terminator

Hampton University
Center for Atmospheric Sciences
Seiji Kato

According to Rozenberg (1966), at any given time approximately 20 to 25% of the surface area of the globe is in a twilight area where the sun is located within 5 to 10 degrees from the horizon.

Flux near terminator

Spherical Geometry
Translucent (finite thickness)

The atmosphere above a region where the sun is below the horizon is still illuminated.

PP model vs. Monte Carlo

Albedo =
$$F / (\underline{\ }_0 F_0)$$

Non-absorbing Atmosphere

• How large is the SW TOA flux when the solar zenith angle is 90 degree or greater than 90 degree?

Twilight Irradiance Estimate from CERES data

- Un-filter CERES radiances whose line-of-sight does not intercepts the earth (MODTRAN).
- Sort radiances as a function of viewing zenith, relative azimuth, and solar zenith angles.
- Integrate radiances to compute irradiance at satellite altitude (fill empty bins).
- Scale the irradiance to the reference altitude (20 km).

CERES Observations (Radiance)

Log10 of azimuthally averaged un-filtered CERES radiance

CERES Observations (Flux)

All-sky irradiances derived from TRMM as a function of Solar zenith angle

Twilight Flux

Solar Zenith Angle Greater than 90 degrees

	Lowest Flux	Highest Flux
	(W m ⁻²)	(W m ⁻²)
Global Mean	0.22	0.29

Further Uncertainty

- CERES ADM fluxes includes off-earth contributions.
- TISA directional models are based on ADM-derived albedo.
- But the flux at solar zenith greater than 85 degree depends on assumptions (linear extrapolation, spline fitting etc.).

Sensitivity to Assumptions between 85 to 90 degree Solar Zenith Angle

	Global SW (W m^-2) March 2000	Difference (W m^-2)
Scene Type Independent Flux	96.57	0.0
Scene Type Dependent Flux (Higher angular res.)	97.14 (96.92)	0.57
Linear Extrapolation of Directional Model	96.88	0.31
1 Hour Interval Linear Extrapolation	97.08	0.51

3-year mean with constant flux = 96.44 W m^{-2}

TISA 3-year mean = $96.1 (96.7 \text{ with Rev1})\text{W m}^{-2}$

Conclusions

- The global mean twilight flux is 0.22 + 0.07 W m⁻².
- The uncertainty in the global mean reflected SW flux due to assumptions between 85 and 90 solar zenith angles is 0.57 W m⁻².
- The lowest global mean flux from this study is 0.1 W m⁻² lower than the corresponding TISA value (this could be due to other reasons).
- The global mean TISA flux can probably be higher by 0.54 W m⁻².